Search for question
Question

Equations \text { 1. } \quad \Delta \mathbf{S}=\mathbf{P}-(\mathbf{E}+\mathbf{T}+\mathbf{I}+\mathbf{Q}) \text { 2. Average precipitation }=\left(\mathbf{\Sigma P}_{\mathbf{i}} \mathbf{A}_{\mathbf{i}} / \mathbf{\Sigma A}_{\mathbf{i}}\right) \text { 3. } \quad{Q}_{\mathrm{p}}=\mathrm{CIA} \text { 3a. } \quad \Delta

\mathbf{S}=\mathbf{P}-\mathbf{R}-\mathbf{G}-\mathbf{E}-\mathbf{T} \text { 4. } f=f_{c}+\left(f_{0}-f_{c}\right) e^{-t t} \begin{aligned} &\text { 5. }\\ &F(t)=\int_{0}^{t} f d t=f_{c} t+\left[\frac{f_{0}-f_{c}}{k}\right]\left(1-e^{-k t}\right) \end{aligned} \text { 24. } \quad I-Q=\frac{\Delta S}{\Delta t} \text { 25. } \quad \frac{I_{1}}{2}+\frac{I_{2}}{2}-\frac{Q_{1}}{2}-\frac{Q_{2}}{2}=\frac{S_{2}-S_{1}}{\Delta t} \text { 28. } \quad Q_{2}=C_{0} I_{2}+C_{1} I_{1}+C_{2} Q_{1} \text { 29. } \quad C_{0}=\frac{-K x+0.5 \Delta t}{D} C_{2}=\frac{K-K x-0.5 \Delta t}{D} \text { 30. } \quad C_{1}=\frac{K x+0.5 \Delta t}{D} \text { 32. } \quad D=K-K x+0.5 \Delta t

Fig: 1

Fig: 2

Fig: 3

Fig: 4

Fig: 5

Fig: 6

Fig: 7

Fig: 8

Fig: 9

Fig: 10

Fig: 11

Fig: 12

Fig: 13

Fig: 14