Integration
2) Evaluate the following integrals by algebraic or trigonometric substitutions.
\text { a) } \int \frac{\left(x^{3 / 2}-x^{1 / 3}\right)}{6 x^{1 / 4}} d x
\text { b) } \int \frac{1}{x^{2} \sqrt{4-x^{2}}} d x
Verified
Integration
Convert the equation into spherical coordinates.
\rho=18 \sec (\varphi)
\rho=18 \sin (\varphi)
x^{2}+y^{2}+(z-9)^{2}=81
\rho=\sqrt{18}
\rho=18 \cos (\varphi)
Read More
Integration
\left(\sqrt{26}, \frac{\pi}{6}, \frac{\pi}{3}\right)
Convert the spherical point (p, o, 0) into rectangular coordinates.
Read More
Integration
Convert the spherical point (p, q,0) into rectangular coordinates.
Read More
Integration
Set up and evaluate the indicated triple integral in the appropriate coordinate system. Enter an exactanswer. Do not use a decimal approximation.
\iiint_{Q} z d V, \text { where } Q \text { is the region between } z=\sqrt{x^{2}+y^{2}} \text { and } z=\sqrt{16-x^{2}-y^{2}}
\iiint_{Q} z d V=
Read More
Integration
After set up, evaluate the indicated triple integral in the appropriate coordinate system. Enter an exactanswer. Do not use a decimal approximation.
\iiint_{Q} z e^{f(x, y)} d V, f(x, y)=\sqrt{x^{2}+y^{2}}, \text { where } Q \text { is the region inside } x^{2}+y^{2}=100, \text { outside } x^{2}+y^{2}=64
and between z=0 and z=5.
\iiint_{Q} z e^{f(x, y)} d V=
Read More
Integration
\text { Set up the triple integral } \iiint_{Q} f(x, y, z) d V \text { in cylindrical coordinates. }
Q \text { is the region bounded by } y=36-x^{2}-z^{2} \text { and } y=3
\int_{0}^{6} \int_{3}^{36-r^{2}} \int_{0}^{2 \pi} f(r \cos (\theta), y, r \sin (\theta)) \cdot r d y d r d \theta
\int_{0}^{36} \int_{3}^{36-r^{2}} \int_{0}^{2 \pi} f(r \cos (\theta), y, r \sin (\theta)) \cdot r d y d r d \theta
\int_{0}^{6} \int_{0}^{2 \pi} \int_{3}^{36-r^{2}} f(r \cos (\theta), y, r \sin (\theta)) \cdot r d y d r d \theta
\int_{0}^{2 \pi} \int_{0}^{6} \int_{3}^{36-r^{2}} f(r \cos (\theta), y, r \sin (\theta)) \cdot r d y d r d \theta
Read More
Integration
\text { Set up the triple integral } \iiint_{Q} f(x, y, z) d V \text { in cylindrical coordinates. }
Q \text { is the region above } z=\sqrt{x^{2}+y^{2}} \text { and below } z=\sqrt{1352-x^{2}-y^{2}} .
\int_{0}^{2 \pi} \int_{0}^{26} \int_{r}^{\sqrt{1352-r^{2}}} f(r \cos (\theta), r \sin (\theta), z) d z d r d \theta
\int_{0}^{2 \pi} \int_{0}^{26} \int_{r}^{\sqrt{1352-r^{2}}} f(r \cos (\theta), r \sin (\theta), z) \cdot r d z d r d \theta
\int_{0}^{2 \pi} \int_{0}^{676} \int_{r}^{\sqrt{1352-r^{2}}} f(r \cos (\theta), r \sin (\theta), z) d z d r d \theta
\int_{0}^{2 \pi} \int_{0}^{676} \int_{\nu}^{\sqrt{1352-r^{2}}} f(r \cos (\theta), r \sin (\theta), z) \cdot r d z d r d \theta
Read More
Integration
Write the given equation in Cylindrical coordinates.
(x-95)^{2}+y^{2}=9,025
r=95 \sin (\theta)
r=95 \cos (\theta)
r=190 \sin (\theta)
r=190 \cos (\theta)
Read More
Integration
Write the given equation in cylindrical coordinates.
x^{2}+y^{2}=196
Read More
Integration
Find the mass of the solid with density p(x, y, z) and the given shape.
\rho(x, y, z)=41, \text { solid bounded by } z=x^{2}+y^{2} \text { and } z=9
Mass
Read More
Getting answers to your urgent problems is simple. Submit your query in the given box and get answers Instantly.
Success
Assignment is successfully created
Get Homework Help Now!
Success
Assignment is successfully created
Error
Please add files or description to proceed