Search for question

p(x): ²-5x+6=0

q(x): z ≤ 4

r(x): r is odd

For the universe of all integers, determine the truth or falsity of each of the following statements.

If a statement is false, provide a counterexample.

(a) Erp(r) →q(r)]

[(x)b (x)dxA (9)

(c) 3x[g(x) → p(x)]

[(x)d + (x)b]TA (P)

(e) 3x[p(x) → r(r)]

(f) Vx[p(x) → r(x)]

(g) r[r(z) → p(x)]

(h) Vr[r(z) → p(x)]

(i) Vrp(x) → (g(x) → r(x))]

(i) 3x[p(x) → (g(x) → r(x))]

(k) Vr[-q(z) →→r(x)]

(1) 3x[-q(z) → -r(x)]

(m) Vr[(p(x) V g(x)) → r(x)]

(n) 3r[(p(x) V g(x)) → r(x)]

Fig: 1