on R². (a) (4 points) What is the equivalence class [(1,0)]E? What kind of geometric object is[(1,0)]E in the real plane R^2? \text { (b) (6 points) Define a function } f: \mathbf{R}^{2} \times \mathbf{R}^{2} \rightarrow \mathbf{R}^{2} \text { by } f\left(\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)\right)=\left(\sqrt{a_{1}^{2}+a_{2}^{2}}+\sqrt{b_{1}^{2}+b_{2}^{2}}, 0\right) \text { for }\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right) \in \mathbf{R}^{2} . \text { Prove that } f \text { respects the equivlenence relation } E \text { . }
Fig: 1
Fig: 2
Fig: 3
Fig: 4
Fig: 5
Fig: 6
Fig: 7