Question

# Select the correct characterization of the following sets of vectors. \text { 1. }\left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right),\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right),\left(-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right) \text { 2. }\left(\frac{2}{3},-\frac{2}{3}, \frac{1}{3}\right) ;\left(\frac{2}{3}, \frac{1}{3},-\frac{2}{3}\right),\left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right) \text {

3. }(1,0,0),\left(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right),(0,0,1) 4 \cdot\left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}},-\frac{2}{\sqrt{6}}\right),\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}, 0\right) O 1,2,3, and 4 are all orthonormal 1 and 4 are orthonormal, 2 is orthogonal but not orthonormal, and 3 is not orthogonal ororthonormal O 1.2. and 4 are orthonormal, 3 is not orthogonal or orthonormal O 1 and 2 are orthonormal while 3 and 4 are not orthogonal or orthonormal

Fig: 1

Fig: 2

Fig: 3

Fig: 4

Fig: 5

Fig: 6

Fig: 7

Fig: 8

Fig: 9