posted 10 months ago

posted 10 months ago

and (2,2).

posted 10 months ago

\text { (d) } \int_{0}^{\pi / 4} \int_{0}^{1 / \cos \theta} \sin \theta r d r d \theta

\int_{0}^{3} \int_{y+1}^{4} \sin (x y) d x d y

\text { (c) } \int_{2}^{4} \int_{\pi / 2}^{5 \pi / 4}\left(r^{2}+1\right) r d \theta d r

\int_{0}^{5} \int_{-2}^{x+1}\left(x^{2}+y^{2}\right) d y d x

posted 10 months ago

posted 10 months ago

posted 10 months ago

OP is perpendicular to OQ where O is the origin.

Show that pq =-4.

The chord PQ crosses the xaxis at point M.

The focus of the parabola lies at point K.

Find the length of KM in terms of a.

posted 10 months ago

Find a Cartesian equation of the curve.

Give your answer in the form y = f(x).

I=\int_{0}^{1} x^{2} d y

The integral / is defined as

\text { Write } I \text { in terms of } \theta \text {. }

Evaluate !.

\text { Find the equation of the tangent to the curve when } \theta=\frac{\pi}{6} \text {. }

Give your answer in the form m/nwhere m and n are integers.

posted 10 months ago

\sec ^{2} x

\csc ^{2} x

\tan ^{2} x

\sec ^{2} x \tan x

posted 10 months ago

posted 10 months ago

\text { a) } \cos \theta(\tan \theta+\sqrt{3})=0 \text { for } 0 \leq \theta<2 \pi

\cos (2 \theta)=2 \sin ^{2} \theta \text { for } 0 \leq \theta \leq 2 \pi