Search for question
Question

Consider the linear system Ax = b, where A=\left[\begin{array}{lll}

0 & 1 & 1 \\

1 & 1 & 0 \\

1 & 2 & 1

\end{array}\right] \quad \text { and } \quad b=\left[\begin{array}{c}

-2 \\

4 \\

1

\end{array}\right] Compute the full SVD of A, then the pseudo-inverse A+. ) Why is Ax = b not solvable? Using A+, find the least squares solutions â.

Fig: 1

Fig: 2

Fig: 3

Fig: 4

Fig: 5