posted 11 months ago

Prove using mathematical induction the following proposition:

posted 11 months ago

Proposition: If a e Z and, if a? - 2a + 7 is even, then a is odd.

posted 11 months ago

(-\mathrm{Q} \rightarrow-\mathrm{P}) \rightarrow(\mathrm{P} \rightarrow \mathrm{Q})=\text { True }

posted 11 months ago

(\neg p \vee q) \wedge(q \rightarrow \neg r \wedge \neg p) \wedge(p \vee r) \text { is satisfiable }

posted 11 months ago

Proposition: If a is an even integer number, then 7(a + 3) is odd.

posted 11 months ago

1+4+7+\cdots+(3 n-2)=(n(3 n-1)) / 2

posted 11 months ago

posted 11 months ago

A \rightarrow(B \vee C) \equiv(A \rightarrow B) \vee(A \rightarrow C)

posted 11 months ago

(p \rightarrow r) \wedge(q \rightarrow r) \equiv((p \vee q) \rightarrow r)

posted 11 months ago

Proposition: For every n e z, then n? + 2 is not divisible by 4.