Search for question
Question

Find a basis and the dimension of the following vector spaces: \text { (i) }\left\{\left[\begin{array}{c}

z \\

w

\end{array}\right] \in \mathbb{C}^{2}: z-4 w=0\right\} \text {. } \operatorname{col}(A) \leq \mathbb{R}^{4} \text {, where } A=\left[\begin{array}{ccccc}

1 & 2 & 0 & 1 & -4 \\

2 & 3 & 2 & 1 & -3 \\

1 & 0 & 0 & -1 & 2 \\

0 & 1 & -2 & 0 & 2

\end{array}\right] \text { ii) }\left\{\mathbf{v} \in \mathbb{R}^{3}:\left[\begin{array}{rrr}

1 & 3 & 2 \\

1 & -1 & 2 \\

-1 & 2 & -2

\end{array}\right] \mathbf{v}=\mathbf{0}\right\} \text {. }

Fig: 1

Fig: 2

Fig: 3

Fig: 4