Given the following differential equation: \ddot{y}+2 \dot{y}+y=2 u(t) Using the Laplace transform and the inverse transform, obtain the response of the system(in the time domain) for the following initial conditions and input: y(0) = 3, j(0) = 0, and u(t) = 0 y(t)=3 e^{-t}+3 t e^{-t} y(t)=e^{-t}+3 t e^{-t} y(t)=3 e^{-t}+t e^{-t} y(t)=3 e^{-t}-3 t e^{-t}
Fig: 1
Fig: 2
Fig: 3
Fig: 4
Fig: 5
Fig: 6
Fig: 7
Fig: 8
Fig: 9