Given the following differential equation: \ddot{y}+2 \dot{y}+y=2 u(t) Using the Laplace transform and the inverse transform, obtain the response of the system(in the time domain) for the following initial conditions and input: y(0) = 3, j(0) = 0, and u(t) = 0 y(t)=3 e^{-t}+3 t e^{-t} y(t)=e^{-t}+3 t e^{-t} y(t)=3 e^{-t}+t e^{-t} y(t)=3 e^{-t}-3 t e^{-t}

Fig: 1

Fig: 2

Fig: 3

Fig: 4

Fig: 5

Fig: 6

Fig: 7

Fig: 8

Fig: 9