Search for question

differentiating the solution with respect to t.Differentiate D'Alembert's solution with respect to t. Which of the following is ut (x,t)? O g(t) O g(x + ct) – g(x – ct) O f(x) O 0 \bigcirc \frac{c f^{\prime}(x, t)}{2} c \frac{f^{\prime}(x+c t)-f^{\prime}(x-c t)}{2} \text { О } c \frac{f^{\prime}(x+c t)-f^{\prime}(x-c t)}{2}+\frac{c}{2} g(t) \bigcirc \quad c \frac{f^{\prime}(x+c t)-f^{\prime}(x-c t)}{2}+\frac{c}{2}(g(x+c t)-g(x-c t)) \bigcirc c \frac{f^{\prime}(x+c t)-f^{\prime}(x-c t)}{2}+\frac{1}{2}(g(x+c t)-g(x-c t)) \bigcirc \quad c \frac{f^{\prime}(x+c t)-f^{\prime}(x-c t)}{2}+\frac{1}{2}(g(x+c t)+g(x-c t)) \text { О } g(x) \bigcirc \frac{1}{2}(g(x+c t)+g(x-c t)) \text { О } \frac{c}{2}(g(x+c t)+g(x-c t)) \text { О } g(x+c t)+g(x-c t)) \bigcirc(g(x+c t)-g(x-c t))

Fig: 1

Fig: 2

Fig: 3

Fig: 4

Fig: 5

Fig: 6

Fig: 7

Fig: 8

Fig: 9

Fig: 10

Fig: 11

Fig: 12

Fig: 13