Let X be a random variable with p.d.f given by f(x)=\left\{\begin{array}{l}

c x^{2} \text { for } 0 \leq x \leq 2 \\

0 \text { otherwise }

\end{array}\right. Find k (witch makes f a p.d.f of X), Determine the cummulative distribution function of the random varialbe X, Draw graphs of p.m.f. and c.d.f. Compute the expected value and the standard deviation of X. \text { Compute the probability } \mathrm{P}\left(\frac{a}{a+b}

Fig: 1

Fig: 2

Fig: 3

Fig: 4

Fig: 5

Fig: 6

Fig: 7