Register

Homework Help Question and Answers

Submit a new Query

Recent Homework Help Question & Answers


Question 33989

posted 1 years ago

7 Given the SSR
\dot{\mathbf{x}}=\left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -12 & -20 & -9 \end{array}\right] \mathbf{x}+\left[\begin{array}{c} 0 \\ 0 \\ 0.4 \end{array}\right] u \quad y=\left[\begin{array}{lll} 1 & 0 & 0 \end{array}\right] \mathbf{x}
a. Use MATLAB to determine the eigenvalues.
b. Describe the free response of the output y(r) given an arbitrary initial state x(0).
c. Use MATLAB or Simulink to verify your answer in part (b). The initial state vector is
\mathbf{x}(0)=\left[\begin{array}{lll} x_{1}(0) & x_{2}(0) & x_{3}(0) \end{array}\right]^{T}=\left[\begin{array}{lll} 2 & -0.5 & 0 \end{array}\right]^{T}

View answer

Question 33988

posted 1 years ago

Given the SSR
\dot{\mathbf{x}}=\left[\begin{array}{cc} -0.2 & -0.6 \\ 2 & -4 \end{array}\right] \mathbf{x}+\left[\begin{array}{c} 0 \\ 1.5 \end{array}\right] u \quad y=\left[\begin{array}{ll} 1 & 0 \end{array}\right] \mathbf{x}
a.Compute the eigenvalues "by hand."
b. Use MATLAB to verify your answer in part (a).
c. Describe the free response of the output y(t) given an arbitrary initial state x(0).
d. Use MATLAB or Simulink to verify your answer in part (c). The initial state vector is
\mathbf{x}(0)=\left[x_{1}(0) \quad x_{2}(0)\right]^{T}=\left[\begin{array}{ll} -2 & -1 \end{array}\right]^{T}

View answer

Questions not Found

Most popular subject

Thermodynamics

Essay/Summary

Mechanics

Complex Analysis

Engineering Economics

Calculus

Modern Physics

General Chemistry

Strength Of Materials

Fluid Mechanics

x