Search for question
Question

Show that the continuous Fourier transform of the function h(t) = g(t)cos(2pie f t) is H(f) =AT/2{sinc[T(f − fc)] + sinc[T(ƒ + fc)]} where g(t) is the rectangular pulse defined in problem1.

Clearly show all your steps. Note: you may utilize the Fourier transform pairs and properties that are available in the lecture notes, or from other sources.

Fig: 1