Question

\text { Calculate the matrix of cofactors for the coefficient matrix } A=\left(\begin{array}{ccc} 36 & -16 & 0 \\ -16 & 28 & -12 \\ 0 & -12 & 12 \end{array}\right) \text {. } \text { Use the information above to find the inverse matrix } A^{-1} \text {, employing the method of cofactors. } Use your answer from the previous part to solve the matrix equation \left(\begin{array}{ccc} 36 & -16 & 0 \\ -16 & 28 & -12 \\ 0 & -12 & 12 \end{array}\right)\left(\begin{array}{l} i_{1} \\ i_{2} \\ i_{3} \end{array}\right)=\left(\begin{array}{c} 9 / 2 \\ 6 \\ 3 / 2 \end{array}\right) Enter your answer as a column vector using the vector/matrix palette tool. Give exact answers (not decimals). \left(\begin{array}{l} i_{1} \\ i_{2} \\ i_{3} \end{array}\right)=

Fig: 1

Fig: 2

Fig: 3

Fig: 4

Fig: 5

Fig: 6