Question \text { Calculate the matrix of cofactors for the coefficient matrix } A=\left(\begin{array}{ccc}
36 & -16 & 0 \\
-16 & 28 & -12 \\
0 & -12 & 12
\end{array}\right) \text {. } \text { Use the information above to find the inverse matrix } A^{-1} \text {, employing the method of cofactors. } Use your answer from the previous part to solve the matrix equation \left(\begin{array}{ccc}
36 & -16 & 0 \\
-16 & 28 & -12 \\
0 & -12 & 12
\end{array}\right)\left(\begin{array}{l}
i_{1} \\
i_{2} \\
i_{3}
\end{array}\right)=\left(\begin{array}{c}
9 / 2 \\
6 \\
3 / 2
\end{array}\right) Enter your answer as a column vector using the vector/matrix palette tool. Give exact answers (not decimals). \left(\begin{array}{l}
i_{1} \\
i_{2} \\
i_{3}
\end{array}\right)=