Question

\text { Express the function } \frac{5 T \sin (2 k \omega t)}{k \pi} \text { as a } \sin c \text { function. } • Determine the magnitude (absolute value) of its Fourier Transform and sketch it,clearly labeled. If the Fourier transform of a signal x() is X(jo) = 5jo, use the appropriate Fourier transform properties to determine the Fourier Transforms of the following signals: \text { (i) } x_{1}(t)=\frac{d^{2} x(t-3)}{d t^{2}} \text { (ii) } x_{2}(t)=3 x(t) \cos (5 t) \text { Given the signal: } \quad x(t)=2 \delta(t+1)+2 \delta(t-1)

Fig: 1

Fig: 2

Fig: 3

Fig: 4

Fig: 5

Fig: 6