Question

\text { Let } z=x y^{2}+\frac{x}{y}, x=1+s e^{t} \text { and } y=s e^{-t} . \text { What is } z_{t} ? \left(y^{2}-\frac{1}{\tau}\right)\left(s e^{t}\right)+\left(2 x y+\frac{x}{t^{2}}\right)\left(-s e^{-t}\right) \left(y^{2}+\frac{1}{y^{2}}\right)\left(s e^{t}\right)+\left(2 x

y-\frac{x}{y^{2}}\right)\left(s e^{-t}\right) \left(y+\frac{1}{y}\right)\left(s e^{t}\right)+\left(2 x y-\frac{x}{y}\right)\left(-s e^{-t}\right) \left(y^{2}+\frac{1}{y}\right)\left(s e^{t}\right)+\left(2 x y-\frac{x}{y^{2}}\right)\left(-s e^{-t}\right) - None of (A) - (D)

Fig: 1

Fig: 2

Fig: 3

Fig: 4

Fig: 5

Fig: 6