Use the linear approximation to approximate e0.1 +3 sin(0.05). V 1. Choose an appropriate function f(x, y). Use the variables x, y, z in alphabetical order from left to right in your function. For example, enter x³ + z instead of y² + z or y² + x. f(x, y) = a sin (a) [0.5 points] ə dr 8 οι Ω/npoints] 2. Choose an appropriate point of tangency (a, b). (a, b) = ab V sin (a) a da [0.5 points] 3. Calculate the approximation of e0.1 +3 sin(0.05). Round your answer to 4 decimals. e0.1 +3 sin(0.05) sin (a) ⠀⠀ 8 f Ər ∞ant 0 52 B E IN

Fig: 1

Fig: 2