Search for question

\frac{d y}{d x}+2 x y=\frac{1}{\left(1+x^{2}\right)} \text { Given that } y=1 \text { when } x=0 Use the method of complementary functions and particular solutions,determine the general solution of:to 3 \frac{d^{2} x}{d t^{2}}+d t^{d x}-4 x=2 e^{-t} \text { When } t=0, x=0 \quad \frac{d x}{d t}=-5 Use the method of Laplace Transforms to find the solution of: \text { Given that } \mathrm{y}_{0}=1 \text { and } \mathrm{y}_{1}=0 . \quad \frac{d^{2} y}{d t^{2}}+2 \quad \frac{d y}{d t}=2 \sinh t

Fig: 1

Fig: 2

Fig: 3

Fig: 4

Fig: 5

Fig: 6

Fig: 7

Fig: 8

Fig: 9

Fig: 10