What is the general solution of the following homogeneous second order differential equation?12 \frac{d^{2} y}{d x^{2}}+13 \frac{d y}{d x}+42 . y=\cos (1 . x) y=A e^{-6 \cdot x}+B e^{-7 \cdot x}+(0.0070) \cdot \sin (1 \cdot x)-(0.022) \cdot \cos (1 \cdot x) y=A e^{-6 . x}+B e^{-7 . x}-(0.0070) \cdot \sin (1 . x)-(0.022) \cdot \cos (1 \cdot x) y=A e^{-6 \cdot x}+B e^{-7 \cdot x}+(0.0070) \cdot \sin (1 \cdot x)+(0.022) \cdot \cos (1 \cdot x) y=A e^{-6 \cdot x}+B e^{-7 \cdot x}-(0.0070) \cdot \sin (1 \cdot x)+(0.022) \cdot \cos (1 \cdot x)
Fig: 1
Fig: 2
Fig: 3
Fig: 4
Fig: 5
Fig: 6