A Brief about
Read more

Thermodynamics tells us that heat flow occurs whenever there is a temperature difference and this heat always flows from higher temperature to lower temperature. But it does not tell us about the rate at which this heat is being transferred. This is where the subject of heat transfer comes into the picture. Heat transfer is the study of the flow of heat in transient and the rate at which the heat flow is occurring. There are three modes of heat transfer by which heat can flow from one body to another or within the same body with a temperature gradient. The three modes of heat transfer are: 1. Conduction 2. Convection 3. Radiation Out of the three, Conduction is the basic mode of heat transfer that occurs within the same body whether solid or a fluid. Convection is the mode that causes heat transfer between a solid and fluid.ConductionConduction is the independent mode of heat transfer occurring in a medium. The mechanism of heat conduction is different in a solid and a fluid. Conduction in solids can be due to free electron transfer and propagation of lattice vibrational waves. In metallic solids, heat is conducted due to the presence of free electron cloud at the periphery of atoms. These electrons are transferred from one molecule to another and in the process transfer heat. In non-metallic solids, heat conduction takes place due to the propagation of lattice vibrational waves. Heat conduction in liquids is due to the momentum transfer between the colliding molecules. The law governing the heat conduction in a medium was given Fourier and is described mathematically by the equation: Where is the rate of heat flux defined as the rate of heat transfer per unit area, k is the property of the material which governs the ability of the material to conduct heat and is known as Thermal Conductivity, is the temperature gradient within the material which causes the heat flow to occur. In general, the thermal conductivity of metals is higher than those of non-metals, Diamond being an exception. The thermal conductivity of Diamond(2300 W/m.k) is one of the highest known for a solid. The reason for this is the perfect crystalline structure of Diamond. The thermal conductivity of liquids is very low but is higher than that of gases. For example, the thermal conductivity of water is 0.555 W/m.k which is more than an order times higher than that of Air having a thermal conductivity value of 0.026 W/m.k. The thermal conductivity is a material property and depends on temperature.ConvectionConvection occurs between a solid surface and a fluid flowing past the solid surface. Convection is basically Conduction followed by Advection. First, the heat is conduction within the solid surface and comes to the surface. Then, this heat is carried away from the surface by the fluid flowing over the surface. This bulk motion of the fluid is known as Advection. The equation which governs the heat transfer through convection is given by: Where is the rate of heat transfer between the solid surface and the fluid, h is the property governing the ability of the luid to carry away the heat known as Heat Transfer Coefficient, ∆T is the temperature difference between the solid surface and the free stream of fluid or vice-versa depending on the direction of heat flow and A is the surface of the solid surface over which the fluid flows. There are two types of convection depending on the type of fluid flow occurring past the solid surface. First is the Forced convection which occurs when the flow of fluid has been brought by some external agency like a fan or a pump. The more is the velocity of fluid flow, more is the rate of heat transfer. Second is the Free convection which occurs due to the flow of fluid caused due to the force of Buoyancy which in turn is caused due to the difference in density of fluid occurring at two different locations due to the temperature difference. The heat transfer coefficient is not a property of the fluid itself, instead, it depends on a number of factors like dynamic viscosity of the fluid, the velocity of fluid flow, the thermal conductivity of fluid etc.RadiationThe two modes of heat transfer discussed above differ from radiation in a way that they both require a material medium to occur. But radiation is the mode of heat transfer which does not require any material medium to occur. Radiation heat is emitted in the form of Electromagnetic waves emitted by the bodies. All the bodies radiate heat at all the temperatures except at absolute zero. The equation governing the radiation from a body at an absolute temperature T is given by: Where is a property of the body known as emissivity, is Stephen-Boltzmann constant, A is the surface area of the body.

For those who need help beyond the solutions, you can enjoy our other services as well. Our tutors are on board 24/7, ready to share

Priya

Galgotias college of engineering and technology

Thermo Fluids, Turbomachines, System Dynamics, Mathematics, Numerical Methods, Probability, Design

Sessions: 3066

Rahul

Galgotias college of engineering and technology

Thermal Systems, Machine Analysis, Thermo Fluids, Kinematics, Mechanics, Turbomachines, Vibrations,

Sessions: 2599

Parul

Jabalpur engineering college

Mechanics Of Materials, Thermal Systems, Manufacturing Process, Strength Of Materials, Energy Syste

Sessions: 1581

Prashant

None

Kinematics of Machines, Strength Of Materials, System Dynamics, Statistics, Mechanics Of Materials,

Sessions: 1564

Vinay

None

Strength Of Materials, Numerical Methods, Mechanics Of Materials, Thermodynamics, Differential Equa

Sessions: 1110

Naresh

iit kharagpur

Machine Design, Material Science, Design of Machine, Manufacturing Process, Internal Combustion, St

Sessions: 1075

Ankit

IIT kharagpur

Turbomachines, Machine Design, Power System, System Dynamics, Dynamics, Mechanics, Manufacturing Pr

Sessions: 1021

Manish

None

None

Sessions: 965

Nitin

None

Fluid Mechanics, Heat Transfer, Internal Combustion, Kinematics, Kinematics of Machines, Machine De

Sessions: 831

Naveen

UTU

Manufacturing Process, Design of Machine, Internal Combustion, Thermal Systems, Turbomachines, Kine

Sessions: 822

Vinay

None

Paraphrasing, Dynamics, Probability, Turbomachines, Design of Machine, Computational Fluid Dynamics

Sessions: 782

Shaunak

None

Thermodynamics, Paraphrasing, Accountancy, Statistics, Fluid Mechanics, Finance, Dynamics, Dynamics

Sessions: 747

Deepak

RGPV BHOPAL INDIA

Computational Fluid Dynamics, Internal Combustion, Theory Of Machines, Strength Of Materials, Vibra

Sessions: 707

Rathod

IIT Kharagpur

General Chemistry, Inorganic, Heat Transfer, Kinematics of Machines, Lab Report (ME/MF), Machine De

Sessions: 634

Meena

None

None

Sessions: 561

We take pride in the panel of Expert Tutors that engage with us. Our Expert Tutors and online tutors come from all parts of the world and are not bound by geographical borders. We strive to bridge boundaries to help students get best homework help and online tutoring from across the globe.

Mechanical Engineering Homework Help
Ansys
Autocad
Composite Material
Compressible Fluid Mechanical
Computational Fluid Dynamics
Control System
Design of Machine
Dynamics
Energy Systems
Engineering Drawing
Finite Element Analysis
Fluid Mechanics
Heat Transfer
Instrumentation
Internal Combustion
Machine Design
Manufacturing Process
Material Science
Matlab
Mechanical Measurements
mechanics-of-materials
Robotics
Solid Works
Statics
Strength Of Materials
System Dynamics
Theory Of Machines
Thermo Fluids
Thermodynamics
Turbomachinery
Vibrations