partial fraction expansion technique. \frac{d^{2} x}{d t^{2}}+6 \frac{d x}{d t}+25 x=e^{-t} x(0)=0 \left.\frac{d x}{d t}\right|_{t=0}=0 \frac{d^{2} x}{d t^{2}}+4 \frac{d x}{d t}+3 x=2 \int_{0}^{t} e^{-\tau} d \tau \left.\frac{d x}{d t}\right|_{t=0}=x(0)=0 (c) which solutions exhibit oscillatory behavior? link this to the poles of X(s). (d) which solutions exhibit convergent behavior? link this to the poles of X(s).
Fig: 1
Fig: 2
Fig: 3
Fig: 4
Fig: 5
Fig: 6
Fig: 7
Fig: 8