Search for question
Question

3. For the systems below, x(t) is the input while y(t) is the output. Determine whether each system is linear or nonlinear. Fully justify your answer for each system. \text

{ (a) } \frac{d}{d x} y(t)+2 \cdot y(t)=x^{2}(t) \text { (b) } \frac{d}{d t} y(t)+3 t \cdot y(t)=t^{2} \cdot x(t) \text { (c) } 3 \cdot y(t)+2=x(t) \text { (d) } \frac{d}{d t} y(t)+y^{2}(t)=x(t)

Fig: 1

Fig: 2

Fig: 3

Fig: 4

Fig: 5