313 show that the elastic stress strain relations for an isotropic mat
Question
3.13 Show that the elastic stress-strain relations for an isotropic material are \begin{array}{l}
\varepsilon_{1}=\frac{\sigma_{1}}{E}-v \frac{\sigma_{2}}{E}-v \frac{\sigma_{3}}{E} \\
\varepsilon_{2}=\frac{\sigma_{2}}{E}-v \frac{\sigma_{1}}{E}-v \frac{\sigma_{3}}{E} \\
\varepsilon_{3}=\frac{\sigma_{3}}{E}-v \frac{\sigma_{1}}{E}-v \frac{\sigma_{2}}{E}
\end{array} Hence derive an equation for the dilatation in terms of Poisson's ratio,Young's modulus, and the sum of the principal stresses. For what value of v is the volume change zero?