а.Draw the element in s-t coordinate scale if element's dimensions are 2b = 4 and 2a = 3.Then, calculate the area of the element. \text { b. Show how values in the bottom row of the stiffness matrix [kGG } \left.{ }_{G}^{(e)}\right] \text { of the rectangular } \text { element are obtained from equation }\left[k_{G}^{(e)}\right]=\int_{A} G \cdot[N]^{T} \cdot[N] \cdot d A \text {. The resultant } \text { matrix equation is equation }\left[k_{G}^{(\theta)}\right]=\frac{G-A}{36} \cdot\left[\begin{array}{lll}
4 & 21 & 2 \\
2 & 42 & 1 \\
1 & 24 & 2 \\
2 & 14 & 4
\end{array}\right] \text {. } \text { Multiphy }\left[\begin{array}{lll}
4 & 21 & 2 \\
2 & 42 & 1 \\
1 & 24 & 2 \\
2 & 14 & 4
\end{array}\right] \frac{G-A}{36} \text { if } G=3 \text {. You must obtain value of A to complete this }