Question

(a) Find the exact value of the following: (b) Which of the following is true for all real x for the following graph: i) cos(600°); ii) sin(540°). (A) f'(x) >

0 and f"(x) > 0; (B) f'(x) > 0 and f"(x) < 0; (C) f'(x) < 0 and f"(x) > 0; (D) f'(x) < 0 and f"(x) < 0. (c) i) Show that ii) Hence deduce that \frac{\sec ^{2} x+\operatorname{cosec}^{2} x}{\sec ^{2} x \operatorname{cosec}^{2} x}=1 \frac{\tan ^{2} x+1}{\sec ^{2} x \operatorname{cosec}^{2} x}=\sin ^{2} x

Fig: 1

Fig: 2

Fig: 3

Fig: 4

Fig: 5

Fig: 6

Fig: 7

Fig: 8

Fig: 9

Fig: 10

Fig: 11

Fig: 12

Fig: 13