\frac{d}{d x}\left(\frac{2 x}{\sqrt[3]{x^{2}+4}}\right)=\frac{2\left(x^{2}+12\right)}{3\left(x^{2}+4\right)^{\frac{4}{3}}} \int \frac{x^{2}+12}{\left(x^{2}+4\right)^{\frac{4}{3}}} d x (a) i) Show that ii) Hence find (b) Find the area between the curves shaded in the diagram below. (c) Find the area

of the pentagon (to the nearest cm²). Hint: try breaking the pentagon into triangles.

Fig: 1

Fig: 2

Fig: 3

Fig: 4

Fig: 5

Fig: 6

Fig: 7

Fig: 8