A periodic function f (t) is defined over one period as: f(t)=t^{2}-\pi \quad-1

of the function (even, oddor neither) Determine the trigonometric Fourier coefficients of the function f(t). Write down the Fourier series of the function up to n=3, where n is the harmonic number Use the Fourier series of f(t) to find a numerical series for n? (hint: use the Fourier series off(t) to evaluate f(t = 0)).

Fig: 1

Fig: 2

Fig: 3

Fig: 4

Fig: 5

Fig: 6

Fig: 7