in the formula for . to get an inequality, and then replace a 3 with a 6 to get a further inequality, and simplify, to show that it is true for n-k +1. a_{k+1}=\sqrt{3+a_{k}}<\sqrt{3+3}<\sqrt{3+6} a_{i+1}<\sqrt{3+6} a_{i+1}< \text { 3. For the sequence }\left\{a_{x}\right\} \text { with } a_{1}=2 \text { and } a_{\text {ont }}-\sqrt{3+a_{n}} ; n \geq 1 use Mathematical Induction to prove that a. <3 for all natural numbers, n.
Fig: 1
Fig: 2
Fig: 3
Fig: 4
Fig: 5
Fig: 6
Fig: 7
Fig: 8
Fig: 9
Fig: 10