Q 2.5 Now suppose you decide to release n songs in 2020, where n is some even integer. Which of the following functions f(n) correctly return the probability that at

least half of the songs you release in 2020 end up on the charts? \begin{aligned} &f(n)=1-\sum_{k=0}^{\frac{n}{2}}\left(\begin{array}{l} n \\ k \end{array}\right)\left(\frac{2}{3}\right)^{k}\left(\frac{1}{3}\right)^{n-k}\\ &f(n)=\left(\begin{array}{l} n \\ \frac{n}{2} \end{array}\right) \frac{2^{\frac{n}{2}}}{3^{n}}\\ &f(n)=\sum_{k=\frac{n}{2}}^{n}\left(\begin{array}{l} n \\ k \end{array}\right) \frac{2^{k}}{3^{n}}\\ &f(n)=\sum_{k=\frac{n}{2}+1}^{n}\left(\begin{array}{l} n \\ k \end{array}\right)\left(\frac{2}{3}\right)^{k}\left(\frac{1}{3}\right)^{n-k}\\ &\text { None of the above } \end{aligned}

Fig: 1

Fig: 2

Fig: 3