Question

\begin{aligned} &\text { Suppose } \vec{u}_{1}=(4,0,1,2,1), \vec{u}_{2}=(0,1,-1,0,1), \text { and } \vec{u}_{3}=(1,3,0,-2,0) . \text { The }\\ &\text { Gram-Schmidt procedure produces an orthogonal basis }\left\{\vec{q}_{1}, \vec{q}_{2,} \vec{q}_{3}\right\} \text { for } \end{aligned} \operatorname{span}\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right\} \cdot \vec{q}_{1} \text { and } \vec{q}_{2} \text { are shown below. Fill in the entries for } \vec{q}_{3} \vec{q}_{1}=(4,0,1,2,1) \vec{q}_{2}=(0,1,-1,0,1) \vec{q}_{3}=

Fig: 1

Fig: 2

Fig: 3

Fig: 4

Fig: 5