Search for question
Question

By directly evaluating the integral in the definition, show that the Fourier transform of U_{0}(x)=\left\{\begin{array}{clr} 1+\cos (x) & : & |x|<\pi \\ 0 & z & \text { otherwise }

\end{array}\right. is given by \tilde{U}_{0}(k)=\frac{2 \sin (\pi k)}{k\left(1-k^{2}\right)} The function u(z, y) satisfies the partial differential equation \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \quad \text { in } \quad-\infty

Fig: 1

Fig: 2

Fig: 3

Fig: 4

Fig: 5

Fig: 6

Fig: 7

Fig: 8

Fig: 9

Fig: 10

Fig: 11

Fig: 12

Fig: 13

Fig: 14

Fig: 15

Fig: 16