y = Find the equation representing the line from B to O: y = \text { Use Green's Theorem to find the line integral } \oint_{c} \mathbf{v} \bullet d \mathbf{r}, \text { where } \mathbf{v}=3 x \hat{\mathbf{i}}+4 x^{3} y \hat{\mathbf{j}} \text {, and where Cis from part (a). } \oint_{c} \underline{\mathrm{v}} \bullet d \underline{\mathbf{r}}=\iint_{\text {region }}\left\{\frac{\partial v_{y}}{\partial x}-\frac{\partial v_{x}}{\partial y}\right\} d x d y \oint_{c} \mathrm{v} \bullet d \mathbf{r}=\iint_{\text {region }}\{ \oint_{c} \underline{\mathbf{v}} \cdot d \underline{\mathbf{r}}=
Fig: 1
Fig: 2
Fig: 3
Fig: 4
Fig: 5
Fig: 6
Fig: 7
Fig: 8
Fig: 9