Search for question
Question

Consider the matrix A=\left[\begin{array}{cc} 1 & 1 \\ -1 & 1 \\ \sqrt{2} & \sqrt{2} \end{array}\right] (a) Find the reduced singular value decomposition of A, i.e., a square diagonal matrix

E andmatrices U, V with orthonormal columns such that A = U£V". (b) Find the standard matrix of the orthogonal projection ontoRow(A). b for(c) Find a least squares solution â of Ax b=\left[\begin{array}{l} 1 \\ 0 \\ 0 \end{array}\right] (d) Is the solution you found in part (c) unique? Explain why or why not.

Fig: 1

Fig: 2

Fig: 3

Fig: 4

Fig: 5

Fig: 6

Fig: 7