-\left(x u_{x}\right)_{x}+\frac{2 u}{x}=\lambda \frac{u}{x} \text { for } 1 u^{\prime}(1)=u^{\prime}\left(e^{\pi}\right)=0 . \end{array}\right. ) Determine the eigenvalue problem solved by v(y), where we define v(y)=u(x) \quad \text { with } y=\ln x \text {. } \phi_{n}(x)=\frac{\sqrt{2}}{\sqrt{\pi}} \cos (n \ln x) .
Fig: 1
Fig: 2
Fig: 3
Fig: 4
Fig: 5
Fig: 6
Fig: 7