of values X may take on. Similarly, the expected value of any function f of random variable X is E[f(X)]=\sum_{x \in V \text { alura }(X)} P(X=x) f(x) Now consider the function below, which we call the "indicator function" \delta(X=a):=\left\{\begin{array}{ll} 1 & \text { if } X=a \\ 0 & \text { if } X \neq a \end{array}\right. Let X be a random variable which takes on the values 3, 8 or 9 with probabilities p3, p8 and p9 respectively. Calculate E[6(X = 8)].
Fig: 1
Fig: 2
Fig: 3
Fig: 4
Fig: 5
Fig: 6
Fig: 7