Search for question
Question

(e) (5 pts) Recall that the expected value E[X] for a random variable X is E[X]=\sum_{x \in V a l w \in \Delta(X)} P(X=x) x where Values(X) is the set

of values X may take on. Similarly, the expected value of any function f of random variable X is E[f(X)]=\sum_{x \in V \text { alura }(X)} P(X=x) f(x) Now consider the function below, which we call the "indicator function" \delta(X=a):=\left\{\begin{array}{ll} 1 & \text { if } X=a \\ 0 & \text { if } X \neq a \end{array}\right. Let X be a random variable which takes on the values 3, 8 or 9 with probabilities p3, p8 and p9 respectively. Calculate E[6(X = 8)].

Fig: 1

Fig: 2

Fig: 3

Fig: 4

Fig: 5

Fig: 6

Fig: 7