Search for question
Question

Find the directions of maximum and minimum change of f at the given point, and the values of the maximum and minimum rates of change. f(x, y)=5 y^{2} e^{7 x},(4,-3)

\text { The maximum change is } 15 e^{28} \sqrt{445} ; \text { in the direction }\left(-315 e^{28}, 30 e^{28}\right) \text { The minimum change is }-15 e^{28} \sqrt{445} ; \text { in the direction }\left(315 e^{28},-30 e^{28}\right) \text {. } \text { The maximum change is } 15 e^{-28} \sqrt{445} ; \text { in the direction }\left(-315 e^{-28}, 30 e^{-28}\right) \text { The minimum change is }-15 e^{-28} \sqrt{445} ; \text { in the direction }\left(315 e^{-28},-30 e^{-28}\right) \text { The maximum change is } 15 e^{28} \sqrt{445} ; \text { in the direction }\left(315 e^{28},-30 e^{28}\right\rangle \text { The minimum change is }-15 e^{28} \sqrt{445} ; \text { in the direction }\left\{-315 e^{28}, 30 e^{28}\right) \text { The maximum change is } 15 e^{-28} \sqrt{445} ; \text { in the direction }\left(315 e^{-28},-30 e^{-28}\right) \text { The minimum change is }-15 e^{-28} \sqrt{445} \text {; in the direction }\left(-315 e^{-28}, 30 e^{-28}\right\rangle

Fig: 1

Fig: 2

Fig: 3

Fig: 4

Fig: 5

Fig: 6

Fig: 7

Fig: 8

Fig: 9

Fig: 10