given are the bezier points of a cubic bezier curvex t with mathbf b _
Question
Given are the Bézier points of a cubic Bézier curvex(t) with \mathbf{b}_{0}=\left(\begin{array}{l}
0 \\
0
\end{array}\right), \quad \mathbf{b}_{1}=\left(\begin{array}{c}
0 \\
27
\end{array}\right), \quad \mathbf{b}_{2}=\left(\begin{array}{l}
27 \\
27
\end{array}\right), \quad \mathbf{b}_{3}=\left(\begin{array}{c}
27 \\
0
\end{array}\right) Use the de Casteljau algorithm to determine the value x(3) as well as all intermediate points!