s, u, p and w using matrix manipulation in MATLAB (use invand/or backslash \). b) Solve the system of linear equations, showing three complete iterations, using the following methods. Calculate the absolute relative approximate errors: i. Gauss-Seidel iterative method. ii. Jacobi iterative methods. iii. Gauss-Seidel with relaxation, with 2 0.8. c) Solve the system of linear equations using the appropriate MATLAB function. You may use GaussSeidel, Isolve, Isolvep or even your own code. i. Using Gauss-Seidel iterative method, how many iterations are needed for 6 significant figures accuracy. ii. Using Jacobi iterative method. Print the first 3 iterations in a table format. iii. Using GaussSeidel with relaxation. Plot the number of iterations for 0
Fig: 1
Fig: 2
Fig: 3
Fig: 4
Fig: 5
Fig: 6
Fig: 7
Fig: 8
Fig: 9
Fig: 10
Fig: 11
Fig: 12
Fig: 13
Fig: 14