=. Let V be a subspace of V and W a subspace of W. Prove or disprove that each of the following is a sub spacc of L(V) or L(V, W). -) {T € L(V) : T is invertible}. b) {TE L(V, W) : range Ty = W {T€ L(V,W) : V is a subspace of null T}.

Fig: 1

Fig: 2

Fig: 3

Fig: 4