l^{\infty}, y=\left\{y_{n}\right\}_{n \geq 1} \in l^{\infty} d_{\infty}\left(x_{2} y\right)=\sup _{n \geq 1}\left|x_{n}-y_{n}\right| \text { Show that }\left(l^{\infty}, d_{\infty}\right) \text { is a complete metric space. }
Fig: 1
Fig: 2
Fig: 3
Fig: 4