Search for question
Question

Problem Consider the following sawtooth wave The corresponding Fourier series is given by f(t)=\frac{1}{2}-\sum_{n=1}^{\infty} \frac{1}{n \pi} \sin (n \pi t) Using Matlab: (i) plot the first two terms of the

above Fourier series, that is, f_{1}(t)=\frac{1}{2}-\frac{1}{\pi} \sin (\pi t) \text { for }-2 \leq t \leq 2 \text { , with an increment of } \Delta t=0.1 (ii) plot the first three terms of the above Fourier series, that is, f_{2}(t)=\frac{1}{2}-\frac{1}{\pi} \sin (\pi t)-\frac{1}{2 \pi} \sin (2 \pi t) \text { for }-2

Fig: 1

Fig: 2

Fig: 3

Fig: 4

Fig: 5

Fig: 6

Fig: 7

Fig: 8

Fig: 9

Fig: 10

Fig: 11

Fig: 12

Fig: 13

Fig: 14

Fig: 15

Fig: 16