Question

Circuits

Question 2. Electron affinity in silicon is 4.01 V and work function of aluminum is 4.28 V. Four different Schottky contacts of silicon-aluminum were made with semiconductors with different doping. Reference Chapter 9.

A. N-type silicon Nd=1E16 cm-3

B. N-type silicon Nd= 7.29E14 cm-3

C. N-type silicon Nd=1E12 cm-3

D. P-type silicon Na=1E16 cm-3

For each case find Vbi and W (depletion width). Use the absolute value of VBi when appropriate. Assume room temperature condition, V=25.9 mV, n;=1.5E10cm³, and E; is in the mid band gap.


Answer

Verified

Related Questions

Question 52583

Circuits

Problem 3 For the following circuit, use nodal analysis to write the FOUR equations in standard form. DO NOT SOLVE. You must identify any quasi-supernodes, supernodes, auxiliary equations, and remove dependent variables. Your final equations may only have V₁, V2, V3 and/or V4 as unknowns. Put your final equations in standard form in the box provided.

Read More

Question 52582

Circuits

Problem 2 For the following circuit, write the FOUR mesh equations in standard form. DO NOT SOLVE. You must identify any super meshes, auxiliary equations, and re-move all dependent variables. Your equations may only have 11,12,13 and/or 14 as unknowns. Put your final equations in standard form in the box provided.

Read More

Question 52581

Circuits

Problem 1.1 Determine Reg in Ohms at the (a,b) terminals for the following circuit. Round your answer to the nearest single digit decimal place (tenths).
Problem 1.2 Determine the voltage V, in Volts for the following circuit. Round your answer to the nearest single digit decimal place (tenths).
Problem 1.3 Determine the current I, in Amps for the following circuit. Round your answer to the nearest single digit decimal place (tenths).
Problem 1.4 Determine the power, P3n, delivered to the 302 resistor in Watts for the following circuit.Round your answer to the nearest single digit decimal place (tenths).

Read More

Question 45529

Circuits

11) From your answer in (10), does the 4V 'DC' or steady state voltage impact the value of the displacement current, Ic.

Read More

Question 45528

Circuits

\text { 10) Assuming } I_{C}=C \frac{d V_{C}}{d t} \text {, find the displacement current for } V_{C}=e^{-\omega t}+4 V \text { and } V_{C}=
sin(wt) + 4 V.

Read More

Question 45527

Circuits

9) Based on your answer in (7), can you apply an arbitrarily large field or voltage across a dielectric? What is the name for this limitation and what is its value for Air and Glass (SiO2)?

Read More

Question 45526

Circuits

8) Remembering quantum tunneling from Chapter 3, what is happening to the probability of a tunneling event as the "thickness" of the barrier representing the dielectric decreases?

Read More

Question 45525

Circuits

7) What happens to the relative "thickness", or distance an electron must travel in a straight line across the dielectric, as you increase the voltage?

Read More

Question 45524

Circuits

6) Redraw the diagram in (5) with a small positive voltage on the right-hand side (no voltage or OVon the left-hand side).

Read More

Question 45523

Circuits

5) Draw the energy band diagram of a capacitor made of two aluminum plates with a glass dielectric. The capacitor should have zero applied voltage.

Read More

Submit query

Getting answers to your urgent problems is simple. Submit your query in the given box and get answers Instantly.

Submit a new Query

Please Add files or description to proceed

Success

Assignment is successfully created