Verified
Integration
Convert the equation into spherical coordinates.
\rho=18 \sec (\varphi)
\rho=18 \sin (\varphi)
x^{2}+y^{2}+(z-9)^{2}=81
\rho=\sqrt{18}
\rho=18 \cos (\varphi)
Verified
Integration
\left(\sqrt{26}, \frac{\pi}{6}, \frac{\pi}{3}\right)
Convert the spherical point (p, o, 0) into rectangular coordinates.
Verified
Integration
Convert the spherical point (p, q,0) into rectangular coordinates.
Verified
Integration
Set up and evaluate the indicated triple integral in the appropriate coordinate system. Enter an exactanswer. Do not use a decimal approximation.
\iiint_{Q} z d V, \text { where } Q \text { is the region between } z=\sqrt{x^{2}+y^{2}} \text { and } z=\sqrt{16-x^{2}-y^{2}}
\iiint_{Q} z d V=
Verified
Integration
After set up, evaluate the indicated triple integral in the appropriate coordinate system. Enter an exactanswer. Do not use a decimal approximation.
\iiint_{Q} z e^{f(x, y)} d V, f(x, y)=\sqrt{x^{2}+y^{2}}, \text { where } Q \text { is the region inside } x^{2}+y^{2}=100, \text { outside } x^{2}+y^{2}=64
and between z=0 and z=5.
\iiint_{Q} z e^{f(x, y)} d V=
Verified
Integration
\text { Set up the triple integral } \iiint_{Q} f(x, y, z) d V \text { in cylindrical coordinates. }
Q \text { is the region bounded by } y=36-x^{2}-z^{2} \text { and } y=3
\int_{0}^{6} \int_{3}^{36-r^{2}} \int_{0}^{2 \pi} f(r \cos (\theta), y, r \sin (\theta)) \cdot r d y d r d \theta
\int_{0}^{36} \int_{3}^{36-r^{2}} \int_{0}^{2 \pi} f(r \cos (\theta), y, r \sin (\theta)) \cdot r d y d r d \theta
\int_{0}^{6} \int_{0}^{2 \pi} \int_{3}^{36-r^{2}} f(r \cos (\theta), y, r \sin (\theta)) \cdot r d y d r d \theta
\int_{0}^{2 \pi} \int_{0}^{6} \int_{3}^{36-r^{2}} f(r \cos (\theta), y, r \sin (\theta)) \cdot r d y d r d \theta
Verified
Integration
\text { Set up the triple integral } \iiint_{Q} f(x, y, z) d V \text { in cylindrical coordinates. }
Q \text { is the region above } z=\sqrt{x^{2}+y^{2}} \text { and below } z=\sqrt{1352-x^{2}-y^{2}} .
\int_{0}^{2 \pi} \int_{0}^{26} \int_{r}^{\sqrt{1352-r^{2}}} f(r \cos (\theta), r \sin (\theta), z) d z d r d \theta
\int_{0}^{2 \pi} \int_{0}^{26} \int_{r}^{\sqrt{1352-r^{2}}} f(r \cos (\theta), r \sin (\theta), z) \cdot r d z d r d \theta
\int_{0}^{2 \pi} \int_{0}^{676} \int_{r}^{\sqrt{1352-r^{2}}} f(r \cos (\theta), r \sin (\theta), z) d z d r d \theta
\int_{0}^{2 \pi} \int_{0}^{676} \int_{\nu}^{\sqrt{1352-r^{2}}} f(r \cos (\theta), r \sin (\theta), z) \cdot r d z d r d \theta
Verified
Integration
Write the given equation in Cylindrical coordinates.
(x-95)^{2}+y^{2}=9,025
r=95 \sin (\theta)
r=95 \cos (\theta)
r=190 \sin (\theta)
r=190 \cos (\theta)
Verified
Integration
Write the given equation in cylindrical coordinates.
x^{2}+y^{2}=196
Verified
Integration
Find the mass of the solid with density p(x, y, z) and the given shape.
\rho(x, y, z)=41, \text { solid bounded by } z=x^{2}+y^{2} \text { and } z=9
Mass
Kindly submit your queries
we will make sure available to you as soon as possible.
Search Other Question
Getting answers to your urgent problems is simple. Submit your query in the given box and get answers Instantly.
Success