\sum_{c .} \sum_{n=1}^{x}\left(\frac{1}{e^{n}}+\frac{1}{n(n+1)}\right) \text { d.) } \sum_{n=1}^{x} \frac{3}{n(n+3)} 3.) Determine whether the series is convergentdivergent.or \text { a.) } \sum_{n=1}^{x} \frac{n+2}{n+1} \sum_{n=1}^{x} \frac{1}{n^{2}-4 n+5} \text { c.) } \sum_{n=1}^{x}
\frac{n+5}{\sqrt[3]{n^{7}+n^{2}}} \sum_{n=1}^{x}\left(1+\frac{1}{n}\right)^{2} e^{-n}