Question \text { 17. Determine an equation in the form } f(x)=\frac{a x+b}{c x+d} \text { for a function that has asymptotes with equations } x=-1 \text { and } y=\frac{3}{4} \text { and a } y \text {-intercept of } 2 \text {. } \text { 8. Show that } x+a \text { is a factor of the polynomial } P(x)=(x+a)^{4}+(x+c)^{4}-(a-c)^{4} \text {. } \text { Show that }(\sec x-\cos x)(\csc x-\sin x)=\frac{\tan x}{1+\operatorname{tax}^{2} x} O. Without graphing, determine if each polynomial function has a line symmetry about the y-axis, point symmetry about the origin, or neither. Justify your answer.[6] \text { a. } \quad \mathrm{f}(\mathrm{x})=-2 \mathrm{x}^{5}+8 x^{7}+3 x \text { b. } \quad f(x)=7 x^{4}-3 x^{2}+1