Question

\text { 2. Suppose } V \text { is finite dimensional and }\left\{v_{1}, \ldots, v_{n}\right\} \subset V \text { . Define } T \in \mathcal{L}\left(V^{\prime} . F^{n}\right) \text { hv the formul } T(\varphi)=\left(\varphi\left(v_{1}\right), \ldots, \varphi\left(v_{n}\right)\right) \text { Prove that }\left\{v_{1}, \ldots, v_{n}\right\} \text { is a basis for } V \text { if and only if } T \text { is an isomorphism. }

Fig: 1

Fig: 2

Fig: 3