the associated modal matrix P and diagonal matrix_D,and use these values to solve the following system differential equations: \dot{x}_{1}=x_{1}+4 x_{2} \dot{\mathrm{x}}_{2}=2 \mathrm{x}_{1}+3 \mathrm{x}_{2} \text { Given that when } t=0, x_{1}=0 \text { and } x_{2}=2 \text {. } \text { Use the } 4^{\text {th }} \text { - order Runge Kutta method to solve the differential equation: } \frac{d y}{d x}=e^{x} y for values of x = 0 (0.2) 0.4 given that y = 1 when x = 0. Give your answers correct to 5 decimal places. Obtain the analytical solution of the differential equation and compare the analytical solution when x = 0.4 with the values obtained using Runge-Kutta.
Fig: 1
Fig: 2
Fig: 3
Fig: 4
Fig: 5
Fig: 6
Fig: 7
Fig: 8
Fig: 9
Fig: 10
Fig: 11
Fig: 12