Consider the function f E V given by: f(x)=2|\sin (x)|-1 . (a) Draw a sketch of this function. (b) Find coefficients an and b, such that f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos (n x)+b_{n} \sin (n x) for all x E [(-pi, pi]. (c) Consider the subspace W=\operatorname{span}\{\cos (x), \sin (x), \cos (2 x), \sin (2 x)\} of V. Find the projection f = Projw (f) of f(:, -).onto W with respect to the inner product
Fig: 1
Fig: 2
Fig: 3
Fig: 4
Fig: 5
Fig: 6
Fig: 7
Fig: 8
Fig: 9
Fig: 10
Fig: 11