y_{1}(t) \\
y_{2}(t)
\end{array}\right] \text { solves the following system of first-order linear ODEs: } \left[\begin{array}{l}
y_{1}^{\prime}(t) \\
y_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-2 & -2
\end{array}\right]\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
0 \\
e^{-t} \cos (t)
\end{array}\right] (a) (1 point) Find constants b, c and a function f(t), such that y₁ (t) solves the secon-dorder linear ODE y_{1}^{\prime \prime}(t)+b y_{1}^{\prime}(t)+c y_{1}(t)=f(t) (b) (2 points) For the second-order linear ODE that you wrote down in part (a), find aparticular solution.
Fig: 1
Fig: 2
Fig: 3
Fig: 4
Fig: 5